HelpText - Title Detail
Encyclopedia of Two-Phase Heat Transfer and Flow I: Fundamentals and Methods (A 4-Volume Set)
Author/Editor:    John R Thome
Publisher:    World Scientific Publishing Co
Pubn Place:    Other
Binding:    EBL 3U
Physical Media:    ebook
Pages:    1109
Availability:    Already Published.
Pubn Year:    Jun 2015
LCC:    QC320 -- .E53 2015eb
DDC:    536.2003
eBook ID:    4461923

Binding field indicates NL or UA. Platform fees may be applicable.
Licence Terms for EBL for Libraries
Price:    AUD 3,524.44 (ex. GST)
eISBN:   9789814623216
eISBN10:   9814623210
9789814623209  2015  
hbk.  book (4 vols)

You may already have access to this title as part of the WSP Engineering ebook package. To check if your library has purchased it, Click Here

[Preview The Book]  
 Buy Now!
Add To Saved Trolley
Add To Booklist

Description: The aim of the two-set series is to present a very detailed and up-to-datereference for researchers and practicing engineers in the fields of mechanical,refrigeration, chemical, nuclear and electronics engineering on the importanttopic of two-phase heat transfer and two-phase flow. The scope of the first setof 4 volumes presents the fundamentals of the two-phase flows and heat transfermechanisms, and describes in detail the most important prediction methods, whilethe scope of the second set of 4 volumes presents numerous special topics andnumerous applications, also including numerical simulation methods.Practicingengineers will find extensive coverage to applications involving:multi-microchannel evaporator cold plates for electronics cooling, boiling onenhanced tubes and tube bundles, flow pattern based methods for predictingboiling and condensation inside horizontal tubes, pressure drop methods forsingularies (U-bends and contractions), boiling in multiport tubes, and boilingand condensation in plate heat exchangers. All of these chapters include thelatest methods for predicting not only local heat transfer coefficients but alsopressure drops.Professors and students will find this 'Encyclopediaa ofTwo-Phase Heat Transfer and Flow' particularly exciting, as it contains authoredbooks and thorough state-of-the-art reviews on many basic and special topics,such as numerical modeling of two-phase heat tranfser and adiabatic bubbly andslug flows, the unified annular flow boiling model, flow pattern maps,condensation and boiling theories, new emerging topics, etc.

Contents: 1 Modeling of Gas Liquid Flow in Pipes;Contents;Preface of Set I;Preface;About the Editor-in-Chief;List of Contributors;Chapter 1. Introduction;1. Heat Exchangers;2. Oil and GasTransport;3. Geothermal Energy Plants;4. Solar Energy Power Plants;5. Micro Electronic Devices ;6. Nuclear Reactors;7. Climate Control in Space Vehicles;Chapter 2. Basic Definitions of Two-Phase Flow Parameters;1. Void Fraction;2. Density;3. Mass Concentration;4. Superficial Velocity, Volumetric Flux;5. Mass Flux;6. Velocity;7. Relative or Slip Velocity;8. Slip Ratio;9. Drift Velocity;10. Drift Flux;11. Diffusion Velocity;12. Quality;13. Some Relations;14. Zuber-Findlay Distribution Parameter;Reference;Chapter 3. Simplified Methods;1. Steady Homogeneous Model;2. Lockhart-Martinelli Model;References;Chapter 4. Hydrodynamic Models Based on Flow Patterns;1. Steady Stratified Flow;2. Steady Annular Flow;2.1. Interfacial shear;2.2. Two-dimensional solution for the film;3. Dispersed Bubble Flow;3.1. Bubble rise velocity;4. Slug Flow;4.1. Mass balances;4.2. Average void fraction;4.3. Hydrodynamics of the liquid film;4.4. Pressure drop;4.5. Auxiliary relations;4.5.1 The translational velocity;4.5.2. Bubbles velocities in the liquid slug;4.5.3. Void fraction inthe liquid slug;4.5.4. Slug length;4.5.5. Taylor bubble bottom oscillation;5. Severe Slugging;5.1. The severe slugging cycle;5.2. Boe's criterion for severe slugging;5.3. The stability criterion;5.4. Quasi-equilibrium severe slugging ;5.5. Summary;References;Chapter 5. Flow Pattern Transition;1. Introduction;2. The Unified Model;2.1. Transition from dispersed bubble flow;2.2. The stratified-non-stratified transition;2.3. Transition from annular to intermittent flow;2.3.1. The stability criterion [mechanism (a)];2.3.2. The spontaneous blockage criterion [mechanism (b)];2.3.3. The combined criterion;2.3.4. Effect of pipe inclination;2.4. Sub regions within intermittent flow;2.5. Sub regions instratified flow;2.6. Summary;References;Chapter 6. The Two Fluid Model;1. TheTwo Fluid Model-Formulation;1.1. Reynolds transport theorem;1.2. Continuity equations;1.3. Momentum equations;1.4. Energy equations;1.5. Stratified flow, constant properties;2. Hyperbolic System and Well Posedness;2.1. Example:Open channel flow;2.2. Characteristics and well posedness of stratified flow;2.3. Stratified flow with surface tension;3. Stability of Separated Flow;3.1. Interfacial linear stability;3.2. IKH instability;3.3. VKH instability;3.4. Application to flow pattern transition;3.5. Nonlinear interfacial stability;3.6. Comparison with experimental results;3.7. Structural stability;3.7.1. Annular flow;3.7.2. Stratified flow;3.8. Summary;4. Relation Between Stability and Well Posedness;4.1. Well posedness analysis;4.2. Stability analysis;4.3. Comparison between stability and well posedness;References;Chapter 7. The Drift Flux Model;1. Continuity of the Mixture;2. Mass Conservation of One Species;3. Mixture Momentum Equation;4. Mixture Energy Equation;5. Characteristics Analysis-the Homogeneous Case;6. Speed of Sound for a Homogeneous Equilibrium Mixture;7. Empirical Relations for the Drift Velocity;References;Chapter 8. Flow in Parallel Pipes;1. Evaporating Flows;1.1. (a)The three-zonemodel;1.2. (b and c)Pipe discretization models;1.3. Summary;2. Adiabatic Flow;2.1. Analysis;2.2. Experimental results;2.3. Summary;References;Chapter 9. Flooding and Flow Reversal;1. Introduction;2. Prediction Methods;3. Vertical Flow;4. Inclined Flow;5. Summary;References;Index;2 Condensation Heat Transfer;Contents;Preface;About the Editor-in-Chief;List of Contributors;Chapter 1. Introduction to Condensation Heat Transfer;1. Introduction;1.1. Modes of condensation heat transfer;2. Phase Equilibrium and Two-Phase Thermodynamic Properties;2.1. Conditions for phase equilibrium;2.2. Gibbs phase rule;2.3. Two-phase thermodynamic properties;2.3.1. Clausius-Clapeyron relation;2.4. Effect of curvature and thin films on phase equilibrium;3. Fundamental Process of Condensation;3.1. Simple gas kinetic model of condensation;3.2. Improved gas kinetic model of condensation;4. Homogeneous Condensation;4.1. Metastable state;4.2. Critical droplet radius;5. Heterogeneous Condensation;6. Outline of the Remainder of the Book;References;Chapter 2. Direct-Contact Condensation;1. Introduction;2. Droplet Mode Direct-Contact Condensation;2.1. Droplet condensation analysis;2.2. Single droplet mechanics;2.2.1. Internal circulation;2.2.2. Droplet velocity;2.2.3. Droplet terminal velocity;2.3. Droplet-mode heat transfer;2.3.1. Pure conduction model;2.3.2. Improved droplet growth models;2.3.3. Droplet spray model;2.3.4. Evaluation of models;2.4. Droplet models with non-condensables;2.4.1. Colburn and Hougen (1934) approach;2.4.2. Huang and Ayyaswamy (1987) method;2.4.3. Needfor additional work;3. Sheet/Jet Direct-Contact Condensation;3.1. Laminar jets/sheets;3.2. Turbulent jets/sheets;3.2.1. Empirical jet condensation models;3.2.2. Direct-contact condensation on upward jets;3.3. Condensation on jets with non-condensables present;4. Film Type Direct-Contact Condensation;5. Bubble/Vapor Injection Type Direct-Contact Condensation;5.1. Bubble regime;5.1.1. Stationary vapor bubble condensation;5.1.2. Translating bubbles and bubble trains;5.2. Jet regime;5.2.1. Jet flow regimes;5.2.2. Jet heat transfer;6. Direct-Contact Condensation Summary;References;Chapter 3. Dropwise Condensation;1. Introduction;1.1. Surface tension, wettability and contact angle;1.1.1. Surface tension;1.1.2. Young-Laplace equation;1.2. Contact angle and wetting;1.2.1. Ideal surfaces;1.2.2. Non-ideal surfaces;1.2.3. Contact angle hysteresis;1.2.4. Other issues in vapor/liquid/surface interactions;2. Theory of Dropwise Condensation;2.1. Inception of dropwise condensation;2.2. Minimum droplet size;3. Modeling Dropwise Condensation;3.1. Le Fevre and Rose (1966) model;3.1.1. Capillary depression;3.1.2. Interface resistance;3.1.3. Droplet size and population distribution;3.1.4. Average surface heat flux;3.2. Other theoretical dropwise condensation models;3.3. Empirical models;4. Enhancement of Dropwise Condensation;4.1. Conventional promoters;4.2. Ion-implantation;4.3. Advanced surface coatings;4.4. Nanoroughened surfaces;4.5. Modeling dropwise condensation on superhydrophobic surfaces;5. Continuing Issues in Dropwise Condensation;References;Chapter 4. External Film Condensation;1. Introduction;2. Laminar Film Condensation on a Vertical Plate;2.1. Nusselt (1916) laminar analysis;2.1.1. Effect of condensate subcooling;2.1.2. Further improvement of Nusselt model;3. Wavy Laminar Film Condensation;3.1. Empirical laminar-wavy film condensation models;3.2. Analytical and numerical laminar-wavy film condensation models;4. Turbulent Film Condensation on a Vertical Flat Plate;4.1. Turbulence models;4.1.1. Turbulent eddy diffusivity models;4.2. Empirical turbulent film models;5. Multi-Regime Vertical Plate Models;6. Film-Condensation on Horizontal Tubes;6.1. Improvements to Nusselt horizontal tube analysis;6.1.1. Non-uniformtemperature;6.2. Effect of vapor velocity;6.2.1. Flow separation;7. Banks of Horizontal Tubes;7.1. Nusselt tube bundle analysis;7.2. Improvement to Nusselt model;7.2.1. Method of Honda et al. (1989);7.2.2. Method of Gstoehl and Thome (2005a; 2005b);8. Outstanding Issues in External Film Condensation;References;Chapter 5. Internal Flow Condensation;1. Introduction;2. Basic Two-Phase Flow Notation and Definitions;2.1. Two-phase multiplier;3. T

Found an error in our data? Suggest a correction.

Publisher sets prices. CoInfo converts to $A. Prices change when publisher's prices or exchange rates vary at time of supply. Prices are exclusive of postage. A service fee applies for non-commercial items.